
The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823 

 

Surprising Geometrical Properties that are Obtained 

by Transforming any Quadrilateral into a Lattice 
 

Ruti Segal 
E-mail: rutisegal@gmail.com 

Oranim College, Kiryat Tivon & Shaanan College, Haifa Israel 

 

Moshe Stupel 
E-mail: stupel@bezeqint.net 

Gordon College & Shaanan College, Haifa, Israel 

 

Avi Sigler 
E-mail: avibsigler@gmail.com 

Shaanan Religious College of Education Haifa, Israel 

 

 

 
Abstract 

The article presents an interesting study of properties existing at any quadrilateral when it develops as a lattice consisting 

of sub-quadrilaterals with common properties along its rows and columns.  Among the properties: quadrilaterals’ areas 

representing arithmetic progression, parallel sections with equal lengths.  The study was accompanied by D.G.S. 

computerized technology.  For every property, a mathematical proof of the theorems was given at a level understandable 

by high school students. 

 

1. Introduction 
Research conducted in recent years concerning special properties that exist in different geometrical 

shapes using mathematical tools [2], [7]. Drawing tools and computerized technology, have 

produced surprising results that illuminate the beauty of mathematics, and in particular – of 

Euclidean geometry, and gave stimulus and motivation for extending the research, especially among 

educators in mathematics and their pre-service teachers [3], [4], [6], [8]. 

The present paper deals with the investigation of special and surprising properties that are revealed in 

any quadrilateral what it is turned into a lattice of M × N quadrilaterals. Particular cases have been 

presented and a generalization was made for the general case. 

The investigative activity took place together with the pre-service teachers as a part of a course that 

dealt with the integration of computerized technology in the teaching of mathematics. GeoGebra 

applets were prepared for investigating the properties, and some of the proofs presented where 

prepared by the students. One can find more on the importance of using computerized technology in 

[1], [5], [8], [9]. 
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2. From a quadrilateral to a lattice 
From the quadrilateral ABCD which is the basic cell, one 

goes over to a quadrilateral with N rows and M columns, 

as shown in Figure 1. 

The new structure, whose shape is a quadrilateral, and is 

called a lattice, is obtained from the original quadrilateral, 

as described below. 

 

Lemma 1 
When straight lines connect the middles of the opposite 

sides in any quadrilateral ABCD, the sum of the areas of 

two opposite quadrilaterals is equal to the sum of the 

areas of the other pair of opposite quadrilaterals (Figure 

2). 

Prove that: 
1 3 2 4

S S S S   . 

The proof of the lemma is without words and is based on 

the property that the median in a triangle divides its area 

into two triangles with equal areas: 

1 3 2 4 a b c dS S S S        

In order to illustrate the property according to which the sum of the 

opposite quadrilaterals always equals half the area of the quadrilateral 

ABCD, we construct a GeoGebra applet in which one can drag each 

of the vertices of the quadrilateral ABCD. For each location of the 

vertices (including a concave quadrilateral), the screen shows the sum 

of the areas of the opposite quadrilaterals. 

Link to applet 1: http://tube.geogebra.org/material/simple/id/3238811 

 

 

 

Theorem 1 
In some quadrilateral ABCD, a pair of opposite sides was divided 

into three equal parts, and connected by straight lines, as shown in 

figure 3 (AM = MN = NB, DP = PQ = QC). Three quadrilaterals 

were obtained; whose areas are: 

1 AMPD
S S  

2 MNQPS S   

3 NBCQS S  

Prove that these areas form an arithmetic progression, in other 

words: 
1 3 22S S S   . 

Proof 
From the points A, M and N, we drop perpendiculars to the straight 

line DC. From this we obtain that the quadrilateral ANN1A1 is a 

right-angled trapezoid whose bases are h1 = AA1 and h3 = NN1, and 

where 

 h2 = MM1 is a midline, and therefore h1 + h3 = 2h2. Since the bases 

of the triangles have equal lengths: DP = PQ = QC, the areas of the 

hatched triangles in Figure 3 satisfy: 

2
S

1
S

4
S 3

S

aa

d

d

c c

b

b

A

B

CD

R

Figure 2 

The sum of the areas of 

opposite quadrilaterals 

Figure 3 

Calculation of the areas 

of the quadrilaterals 

MA
N B

CQPD
1M1

A
1

N

1
h

2
h

3
h

A B

CD

Figure 1 

Expansion from a quadrilateral 

to a lattice 



The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823 

 

60 

 

 
MPQ ADP NCQ2S S S    , in other words – the areas of the triangles form an arithmetic 

progression. In the same manner we prove that 
MNQ AMP NBC2S S S    . From both relations it 

follows that: 
1 3 22S S S   . 

 

Conclusion from Theorem 1 
If one divides to opposite sides of a quadrilateral, each into 

N segments of the quote lengths, one obtains a lattice of the 

order “N×1”, as described in figure 4. 

The areas of this quadrilateral, 
1 2 N...S S S, , , , form an 

arithmetic progression. 

The proof is based on Theorem 1. 

When N is odd, the area of the middle quadrilateral 

relative to area of the  original quadrilateral is 
1
N

. 

When N is even, there are two quadrilaterals at the center of the original quadrilateral. The sum of 

their areas with respect to the area of the original quadrilateral is
2
N

. 

To illustrate this property, we prepared an applet that includes two toolbars, one for an odd N, and 

one for an even N, in which one can change the value of N using a toolbar, and obtain the relative 

area of the middle quadrilateral (or the two middle quadrilaterals). Of course, at first sight the result 

is surprising, but after some thought one realizes that this is the property of an arithmetic 

progression. 

Link to applet 2: https://www.geogebra.org/material/simple/id/3238991 

Note: Applet 2 shall also be used to illustrate the property of Theorem 5 below. 

 

 

Theorem 2 
Given is a quadrilateral ABCD, in which: 

3 1 4 2S S S S , , as shown in Fig. 5. We extend the 

length of the sides of the quadrilateral by a factor of two 

outwards, and obtain the points B1, C1, C2, D2. Then there 

holds: 

1 1BB C C ABCD 3 12 ( )S S S S     

2 2DCC D ABCD 4 22 ( )S S S S     
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Proof 
We copy the quadrilateral AB1C1D, and draw in it the altitudes 

h1, h2, h3, as shown in figure 6. 

DC = CC1 = c 

 
    

1 1 1 1

3 1

CB C ADCBCC B ABCD 2

( )c h h
S SS S  

 
    

Since 2h2 = h1 + h3 (midline in a trapezoid),  

we have h3 = 2h2 – h1, and therefore:  

1 1BCC B ABCD 2 1 3 4 1 4 3 12 2c (h h ) [( ) ( )] ( )S S S S S S S S             

In the same manner we obtain: 
2 2DCC D ABCD 4 22 ( )S S S S    . 

Conclusion 2 
The initial cell ABCD, as the first element in a progression, determines the common difference of the 

arithmetic progression in the horizontal direction (to the right) or in the vertical direction 

(downwards). In the expansion “to the right”, the common difference of the progression  

is 
3 12 ( )S S  , and in the expansion downwards, the common 

difference is 
4 2

2 ( )S S  . 
 

Theorem 3 
In the quadrilateral ABCD, is given that:  

AM DP
MB PC

   , 
AQ BN
QD NC

    

The segments MP and QN intersect at the point R,  

as shown in figure 7. 

Then there holds: 
MR
RP

  , 
QR

RN
   

Proof 
We denote the x-coordinates of the vertices of the quadrilateral 

 ABCD by x
A
, x

B
, x

C
, x

D
, and through them we express the  

x-coordinates of the points 

 M, P, Q, N. 
            

        

D C B CA B A D

M P Q N

x x x xx x x x
x x x x



     

  

   


    , , , Now we calculate the x-

coordinate of the point R1 that divides the segment MP by a ratio  

of  
1

1

MR

R P
  , and obtain: 

               

       1

A B D CM P

R

1

1 1( ) ( )

x x x xx x
x

 

  

    

  

 


  . 

In a similar manner we calculate the coordinate 
2R

x  of the point R2 that divides the segment QN by 

the ratio 
2

2

QR

R N
  . We obtain 

2 1R Rx x . 

In other words, R1 and R2 coincide at one-point R. In the same manner would prove that there also 

holds 
2 1R Ry y . 

1 1 1 1 1BCC B ABCD BCB ABC CB C ADC( ) ( )S S S S S S        

10 AB BB  because   
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Conclusion 3 
When, in the quadrilateral ABCD, the opposite sides AB 

and CD are divided into M equal parts, and the opposite 

sides AD and BC are divided into N equal parts, a lattice 

is obtained as described in Figure 8. Each horizontal 

“bar” in the lattice is divided into M equal parts, and 

each vertical “bar” in the lattice is divided into N equal 

parts. 

It could be said that the “cell” at the upper left corner (by 

the vertex A) is “inflated” into a quadrilateral ABCD, 

which is an N×M lattice. 
 

Theorem 4 

The cells in the lattice shown in Figure 8 were numbered 

in accordance with row k and column l, and the area 

of the corresponding cell was marked by Akl. then: 

a) The areas of the cells in each row form an 

       arithmetic progression, where the common 

       difference in each row is equal. 

b) The areas of the cells in each column form an arithmetic 

progression, where the common difference in each column 

is equal. 

 

Proof of a and b 
Figure 9 shows by the vertex A. 

From Lemma 1, we have: 
12 21 11 22

A A A A   . 

From this it follows that 
12 11 22 21A A A A   , therefore a) is 

proven. 

From this it also follows that 
21 11 22 12A A A A   , therefore b) 

is proven. 

From Theorem 2, the common difference D1 in each row is: 

1 3 1
D 2 ( )S S   , 

and the common difference in each column is: 
2 4 2D 2 ( )S S   , 

as shown in Figure 10, which shows the enlarged cell A11.  

 

Lemma 2 
In quadrilateral A11 the diagonals meet at the point R. 

When: D1 = D2 then R is the middle of the diagonal PM (Figure 

10). 

Proof 

1 2 3 1 4 2 3 2 1 4D D S S S S S S S S          

Hence it follows that APN AMNS S  . Since both triangles have a 

common side, their altitudes from the vertices M and P to the base 

AN are equal, and therefore MR = RP. 
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Conclusion 4 

If 
1 2

D D  for each 1 Nk   and  1 M  , in each cell A kl 

one of the diagonals is bisected by the other one. In other words, 

the property PR = RM spreads to all the cells, since the cell A kl is 

built from the cell A11. 

Property in a 2×2 lattice 
The quadrilateral ABCD was divided into a 2×2 lattice, where the 

quadrilateral (“cell”) A11 (Figure 11) satisfies the condition that the 

diagonal AR bisects the diagonal QM (in other words, D1 = D2,  

as shown in Figure 11). 

 

Lemma 3 
Under these conditions the diagonal AC passes through the 

point R and bisects the diagonal BD. 

Proof 
In Conclusion 4 it was proven that if the property D1 = D2 holds in cell A11, then it holds in each cell 

A kl. 

Therefore, in this case, the points x, y, z, w are the middles of the segments QM, BR, NP and RD, 

respectively, as shown in the Figure 12. The quadrilateral QMNP is a parallelogram (connecting the 

middles of the sides of a quadrilateral), and RC and RA are also parallel to MN, therefore the points 

A, R, C are located on a straight line. Hence it also follows that BD is bisected by AC (the segment 

AR is a part of AC, bisects QM and therefore also BD). 
 

Conclusion 5 
The property that in A11 one of the diagonals is bisected 

by the other is inherited by each partial lattice of the order 

2×2. Hence one can generalize that for any lattice of the 

order N×N (square lattice), if the cell A11 has the property 

that D1 = D2, and one of the diagonals bisects the other, 

then the property is inherited by each square sub-lattice. 
 

 

Theorem 5 
ABCD is a lattice of the order 1×2 comprised of the cells 

A11 and A12, as shown in the figure 12. Let M1 and N1  

be the mid-points of the diagonals ED and AF in the cell 

A11 and let M2 and N2 be the mid-points of the diagonals  

BF and EC of the cell A12. 

Then there holds: 

a) M1N1 = M2N2 

b) M1N1 || M2N2 

Note: If ABCD is a trapezoid, then all four points M1, N1, M2, N2 are on the same straight line. 

Proof 

N1M2 is a midline in the triangle AFB , therefore: 

1) N1M2 || AB 

2) N1M2 bisects EF at the point K (property of the midline), and is bisected by EF, and 

therefore: 
1 2

N K KM . 

In the same manner, the segment M1N2 is a midline in the triangle DEC , and it also bisects and is 

bisected by EF at the same point K, therefore N2K = M1K. 
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Hence it follows that the quadrilateral M1N1N2M2 is a parallelogram, and therefore: M1N1 = M2N2, 

and also M1N1 || M2N2. 

In applet 2 one can see that the segments that 

connect the middle points of the diagonals of each 

sub-quadrilateral have equal lengths and are 

parallel to each other. 

Conclusion 6 
In each sub-lattice the order 1×1 of a lattice of the 

order M×N, the distance between the middles of 

its diagonals conserved. In addition, all the 

segments that connect the diagonals of a sub-

lattice of the order 1×1 are parallel. 
 

 

Theorem 6 
In a lattice of the order N×M (Figure 13), let k be 

the distance between the middles of the diagonals  

of the quadrilateral A11. Then the distance K to the 

middles of the diagonals of the lattice N×M is M·N·k. 

Proof 

For the purpose of the proof we focus on a lattice with a single row A11, A12, … , A1M, where the x 

coordinates of the vertices of the quadrilateral A11 are marked 

as described Figure 14. 

We calculate the values the coordinates of the vertices x
R
 and 

x
M+1

 using the values of the vertices x1, x2, x3 and x4. As 

proven, x1, x2, … x
M+1

 form an arithmetic progression whose 

common difference is x1 – x2.  

Therefore: 
M 1 2 1M M 1( )x x x    , and similarly 

R 3 4
M M 1( )x x x   . 

The coordinates of the center of the diagonal that connects the 

vertex x
4
 with the vertex x

M+1 is: 
        4 2 1

1

M M 1

2

( )x x x
x

  
 . In 

the same manner, the x coordinate of the middle of the other 

diagonal is 
        1 3 1

2

M M 1

2

( )x x x
x

  
 . 

From this we obtain:    
              4 2 3 1 1 34 2

2 2
2 2

1 2

M M M M

2 2 2
M( )

x x x x x xx x
x x

   
    ,  

and similarly for the coordinate y.  

Therefore, the distance between the two mid-points is K = M·k. 

Therefore, when the first row is considered as a 1×M sub-lattice, then for N rows we obtain 

K = M·N·k. 

 

Conclusion 7 

In each sub-lattice of the order M × N there holds KM×N = k·M·N, where k is the distance between 

the middles of the diagonals of the basic quadrilateral A11. 

An applet was prepared, which presents at two-dimensional lattice in which two toolbars can be used 

to change the numbers of the rows and the columns. One can drag each of the vertices of the basic 

quadrilateral, thus changing its sides, since the areas in each of the rows constitute an arithmetic 

progression, and similarly the areas of the columns. The common differences of the areas of the rows 
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and the columns are shown on the screen. The screen also shows the connection between the distance 

between the mid-points of the external quadrilateral and the distance between the mid-points of the 

corner sub-quadrilateral (left corner top row). 

Link to applet 3: https://www.geogebra.org/material/simple/id/3239081 
 

 

3. Summary 
We presented an interesting investigation of surprising geometrical properties that are revealed during 

the extension of any quadrilateral into an M×N lattice. 

At the first stage we presented properties that exist in the original quadrilateral (“the basic cell”), with 

a subsequent generalization made for properties conserved during the transition to a lattice. 

At each stage we presented mathematical proofs that rely on basic knowledge of geometry. 

The results serve as a motive to continue investigation and to discover additional properties. 
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5. Appendix- Verbal description to the Applets  

 
Applet 1: The areas of two opposite quadrilaterals  

 

The applet illustrates the property according to which the sum of the opposite quadrilaterals always 

equals half the area of the quadrilateral ABCD. We construct a GeoGebra applet in which one can 

https://www.geogebra.org/material/simple/id/3239081
http://cresmet.asu.edu/crume2007/papers/connor-moss.pdf
http://forumgeom.fau.edu/FG2014volume14/FG201412index.html
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drag each of the vertices of the quadrilateral ABCD, and for each location of the vertices (including a 

concave quadrilateral), the screen shows the sum of the areas of the opposite quadrilaterals. 

Applet 2: The relative area of the middle quadrilateral 

To illustrate the property of relative areas of the middle and center quadrilateral, the applet includes 

two toolbars, one for an odd N, and one for an even N, in which one can change the value of N using 

a toolbar, and obtain the relative area of the middle quadrilateral (or the two middle quadrilaterals). 

The result is surprising, it just a property of an arithmetic progression. 

The applet is also to show that the segments that connect the middle points of the diagonals of each 

sub-quadrilateral have equal lengths and are parallel to each other. 

 

Applet 3: Properties in two-dimensional lattice 

The applet presents at two-dimensional lattice in which two toolbars can be used to change the 

numbers of the rows and the columns. One can drag each of the vertices of the basic quadrilateral, 

thus changing its sides, since the areas in each of the rows constitute an arithmetic progression, and 

similarly the areas of the columns. The common differences of the areas of the rows and the columns 

are shown on the screen. The screen also shows the connection between the distance between the 

mid-points of the external quadrilateral and the distance between the mid-points of the corner sub-

quadrilateral (left corner top row). 


